Microarchitecture security PHISIC 2019

Mathieu Escouteloup (INRIA Rennes)

Advisors: Ronan Lashermes (INRIA Rennes), Jean-Louis Lanet (INRIA Rennes), Jacques Fournier (CEA)

mathieu. escoute loup@inria. fr

October 15^{th} , 2019

Mathieu Escouteloup (INRIA)

Microarchitecture security

October 15^{th} , 2019

Spectre and Meltdown impact

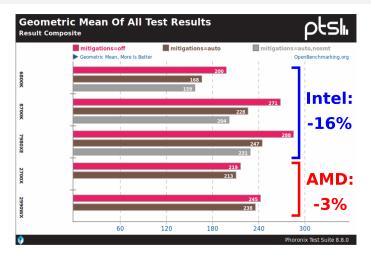
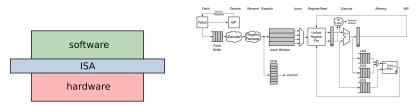


Figure: Mitigations impact on performance on Intel CPUs¹

¹From "The Performance Impact Of MDS / Zombieload Plus The Overall Cost Now Of Spectre/Meltdown/L1TE/MDS" on www.phoronix.com Mathieu Esconteloup (INRIA) Microarchitecture security October 15th, 2019 2/22

- 1 Attacks principles
- 2 Countermeasure methodology
- Icroarchitecture, ISA and security


1 Attacks principles

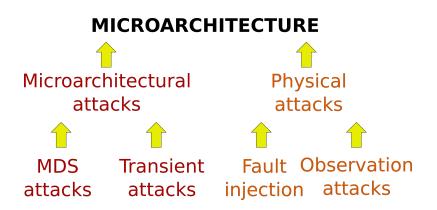
- 2 Countermeasure methodology
- 3 Microarchitecture, ISA and security

4 Conclusion

Overview

Figure: RISC-V BOOM core microarchitecture²

• Focus on attacks affecting the microarchitecture.


• Different possible origins.

Mathieu Escouteloup (INRIA)

Microarchitecture security

 $^{^{2}} from \ https://docs.boom-core.org/en/latest/index.html$

Attacks hierarchy

MDS: Microarchitectural Data Sampling

Microarchitectural attacks

- 1.x Transient attacks: exploit instructions executed but not comitted.
- 1.1 Spectre-class: exploit speculation mechanisms.
- 1.2 Meltdown-class: transfer data from a forbidden instruction.
- 2.x MDS-class: exploit data leakage from shared resources.

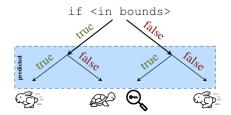
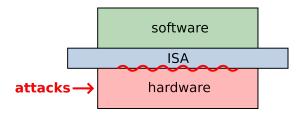


Figure: Speculative execution assumption ³

³From "Spectre Attacks: Exploiting Speculative Execution", P. Kocher et al., S&P'19 <u>Mathieu Escouteloup (INRIA)</u> Microarchitecture security October 15th, 2019 7/22

Physical fault injection



Principle: disturb chip environment to modify signal valuesExploitation: modify data, executed operations ...

Attacks principles

ISA: a broken interface

- Transient attacks: execution sequencing not respected.
- Fault injection: altered instructions.
- Observation attacks: instructions leak informations.

1 Attacks principles

2 Countermeasure methodology

3 Microarchitecture, ISA and security

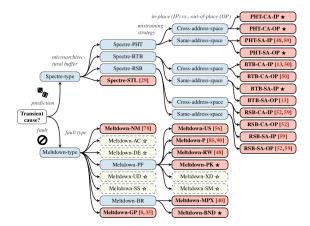
Onclusion

Security cycle: the reactive model

- 1 A weakness is discovered.
- 2 It is studied and solutions are considered.
- **3** A patch is applied.

... Finally: mitigations stacking.

From a specific countermeasure ...


Retpoline

- Spectre-BTB^a (variant 2) mitigation used in Windows 10.
- Designed as a compilation pass.
- Replace indirect jumps by a return sequence.
- Goal: do not use the BTB ...

^aBTB: Branch Target Buffer

jmp *%r11	call set_up_target; (1)	
	capture_spec: (3b)	
	pause;	
	jmp capture_spec;	
	set up target:	
	mov(%rsp), %r11; (2)	
	ret; (3a)	

... to a global solution.

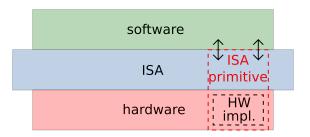
Figure: Transient attacks classification⁴

Mathieu Escouteloup (INRIA)

Microarchitecture security

 $^{^4{\}rm From}$ "A Systematic Evaluation of Transient Execution Attacks and Defenses", C. Canella et al., USENIX Security'19

1 Attacks principles

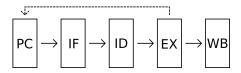

- 2 Countermeasure methodology
- 3 Microarchitecture, ISA and security

4 Conclusion

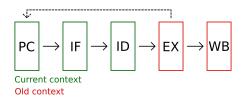
ISA and security

ISA: a main role

- Define needed security guarantees.
- Constrain microarchitecture design for security.
- Make some primitives available for the software.


Current work: hardware contexts

Principles


- Introduce a notion of execution context at the ISA-level.
- Use a context identifier to define a security domain.
- A context change is also a security domain change.
- Application: a tool to know when data can be shared.

Hardware contexts: possible implementations

A simple microarchitecture representation

With hardware contexts

Mathieu Escouteloup (INRIA)

Microarchitecture security

October 15^{th} , 2019

Hardware contexts: an application example

Partitioned BTB

- Each value is linked with a context.
- Here, mitigate Spectre-BTB.
- Extensible to other hardware mechanisms (speculation, cache memories ...).

current address 0	target address X	context 0
current address 5	target address N	context 0
current address 0	target address Z	context 2
current address 3	target address Y	context 1

1 Attacks principles

- 2 Countermeasure methodology
- 3 Microarchitecture, ISA and security

4 Conclusion

Conclusion

Global view

- New weaknesses regularly discovered on modern microarchitectures.
- Complexity is still increasing: 2.186.259 words in x86 specification.
- Integrate security assumptions from the beginning.

Our work

- Define security guarantees at the ISA-level.
- Evaluate hardware contexts with a real implementation.

Conclusion

Other possible workpaths

- CFI^a: why not ban indirect jumps ?
- Define and constraint hardware features: RNG^b.
- Instructions with constant time constraints.
- Specific GPRs^c only usable by secure instructions.

^aCFI: Control-Flow Integrity ^bRNG: Random Number Generator ^cGPR: Global Purpose Register

Microarchitecture security PHISIC 2019

Mathieu Escouteloup (INRIA Rennes)

Advisors: Ronan Lashermes (INRIA Rennes), Jean-Louis Lanet (INRIA Rennes), Jacques Fournier (CEA)

mathieu. escoute loup@inria. fr

October 15^{th} , 2019

Mathieu Escouteloup (INRIA)

Microarchitecture security

October 15th, 2019