
Recommendations for a radically secure ISA

Mathieu Escouteloup 1 Jacques Fournier 2 Jean-Louis Lanet 1

Ronan Lashermes 1

1INRIA 2CEA Leti

May 30th, 2020

CARRV

Radically secure ISA May 30th, 2020 1 / 22



Introduction

The problem

1

1Icon made by Freepik from www.flaticon.com
Radically secure ISA May 30th, 2020 2 / 22



Introduction

The problem

Radically secure ISA May 30th, 2020 3 / 22



Introduction

Content

1 Confidential registers

2 Stricter control flows

3 Hardware security contexts

4 Wrap-up

Radically secure ISA May 30th, 2020 4 / 22



Confidential registers

Table of contents

1 Confidential registers

2 Stricter control flows

3 Hardware security contexts

4 Wrap-up

Radically secure ISA May 30th, 2020 5 / 22



Confidential registers

Ensuring confidentiality at the ISA level

Writing programs handling confidential data is hard
As a developer, we must prevent any timing dependency on the
confidential data.
Compilers are not our friends.
Timing dependency is not the only possible leakage depending on the
context (power consumption, EM radiation, . . . ).

There is no way for the developer to tell the machine: “Take care, this
value must be kept confidential !” .

This issue should be addressed by the ISA

Radically secure ISA May 30th, 2020 6 / 22



Confidential registers

Confidential registers

Recommendation 1 Confidential registers
Tag some registers (e.g. x8 to x15 ) as confidential, with the following
semantic consequences.

It is not possible to branch depending on a confidential register.
Instructions are authorized only if their timing is not data
dependant (integer multiplication and division in particular may be
forbidden depending on their hardware implementation).
They cannot be used as the source address in load and store
instructions.

Any violation of these rules should raise a hardware security fault.

Radically secure ISA May 30th, 2020 7 / 22



Confidential registers

Consequences of confidential registers

Implementation liberty
Depending on the security profile, these registers can be hardened: the
values are masked to avoid power consumption leakage, the
micro-architecture uses hardened execution units. . .

Confidentiality boundary
Confidential registers enable compilers to map confidential variables to
confidential registers with a guarantee that the hardware won’t mess things
up.
In particular, the confidentiality boundaries, when a confidential data is
made public, become trivial to detect.

Radically secure ISA May 30th, 2020 8 / 22



Stricter control flows

Table of contents

1 Confidential registers

2 Stricter control flows

3 Hardware security contexts

4 Wrap-up

Radically secure ISA May 30th, 2020 9 / 22



Stricter control flows

Control flow integrity

Abusing the control flow
The ability to abuse the control flow while keeping static integrity is a
well-known threat from return-oriented programming (ROP) and its
variants.
Numerous control flow integrity (CFI) solutions have been proposed both in
software and hardware. Only hardware solution can withstand the most
powerful attackers, but to be effective the hardware must be able to
discriminate legal control flows from malicious ones.

For effective hardware CFI, the control flow graph must be static.
Therefore forward indirect jumps should be forbidden.

Radically secure ISA May 30th, 2020 10 / 22



Stricter control flows

Removing forward indirect jumps

Recommendation 6 Forbidding forward indirect jumps
Remove the JALR instruction to forbid forward indirect jumps. A mech-
anism is presented in the next section to reintroduce safer indirect jumps.

Consequences
Removing the JALR instructions has several consequences that must be
mitigated.

Dispatcher patterns become costly: we need to add a new DISPATCH
instruction.
It becomes impossible to transfer the control flow to a different
program.
It prevents to simply return from a procedure.
There is no possibility to perform a direct long jump.

Radically secure ISA May 30th, 2020 11 / 22



Stricter control flows

Returns

Recommendation 7 Returns
For efficient returns from procedures, add a new RETURN instruction.
Semantically, the instruction should jump to the instruction following the
last executed JAL whose bit 7 was set to 1.
In other words, the CPU should implement a call stack. The JAL des-
tination register becomes useless and its freed bits (all but the least
significant, i.e. 4 bits) can be used to extend the jump reach. A call to
JAL now pushes the return address to the call stack if bit 7 (the least
significant bit of rd) is 1. Executing RETURN pops the last address in the
call stack and jumps to it.

How to implement this call stack and how to mitigate the other
consequences of removing the indirect jumps are in the paper.

Radically secure ISA May 30th, 2020 12 / 22



Hardware security contexts

Table of contents

1 Confidential registers

2 Stricter control flows

3 Hardware security contexts

4 Wrap-up

Radically secure ISA May 30th, 2020 13 / 22



Hardware security contexts

Split or flush

Definition: security domain
A security domain is the set of elements respecting the same security policy
(isolation, confidentiality, integrity, etc.).

Lesson from past attacks
The big lesson of the various recent attacks is that it is not possible to
share data from different security domains into the same
micro-architectural resource.
Either the resource must be flushed before accepting another input, or the
resource must support being split into isolated sub-resources.

The hardware has no support for security domains. The software
cannot tell to the hardware where the domain boundaries are.

Radically secure ISA May 30th, 2020 14 / 22



Hardware security contexts

Ensuring portability

Recommendation 9 No micro-architecture management
Forbid all micro-architecture management instructions, cache manage-
ment in particular.

Since each CPU has its own resources that may be split or must be flushed,
adding instructions for the management of these elements creates a
portability issue.

Recommendation 10 Hardware security context (HSC) instructions
Micro-architectural security guarantees must be provided through the
HSC instructions described in this section.

Instead, add instructions to delimit domains and let the hardware handle
the consequences.

Radically secure ISA May 30th, 2020 15 / 22



Hardware security contexts

HSC extension - single hart

Single hart
In a single hart system, there is always only one HSC at a time.

HSC data structure
Everything is store in dedicated registers called HSC configurations
(hscconf) which have 3 fields:

Key: a unique cryptographically secure random value that can be
derived to identify the HSC.
Entry point: the entry address for this HSC.
Capabilities: registers to store what can be done by this HSC.

Radically secure ISA May 30th, 2020 16 / 22



Hardware security contexts

Configuration handling

Configuration addressing
hscconf0 corresponds to the current HSC: its fields cannot be modified.
Other configurations have dedicated registers hscconf1, hscconf2, . . .

Accessing and modifying

HSCREAD rd, hscconfs1, offset to read a value.
HSCGENKEY hscconfd to generate a new key and set an HSC as new.
HSCWENTRY hscconfd, rs1 to modify an entry-point of a new HSC.
HSCWCAP hscconfd, rs1 to modify capabilities of a new HSC.

Loading and storing

HSCSTORE hscconfs1, offset(rs1) to store an HSC in memory.
HSCLOAD hsccond, offset(rs1) to load an HSC from memory.

Radically secure ISA May 30th, 2020 17 / 22



Hardware security contexts

Context switching

Move

HSCMV hscconfd, hscconfs1 to transfer all values from a
configuration to another one.

Switch

Both HSCMV and HSCLOAD can overwrite hscconf0 and therefore trigger a
context switch.

Upon a switch, the microarchitecture can detect the security domain
change with the key register and act accordingly: split or flush.
The switch is also a forward indirect jump since the program counter
is set to the new domain entry point: forward indirect jumps are only
authorized when the security domain changes.

Radically secure ISA May 30th, 2020 18 / 22



Hardware security contexts

Multiple harts

Multiple harts sharing the same micro-architectural resources must be
statically allocated to avoid port contention attacks in particular.

No more always-on hart
A hart must now be initiated as a fork of another one and it must be ended
to definitively free the corresponding resources

Hart start/stop

HSCSTART rd, hscconfs1 is used to create a hart with context
hscconf1. rd is set to 0 if the static allocation was successful and the
new hart started.
HSCEND rd is used to end the current hart and possibly releasing all
corresponding resources.

The other alternative is to forbid resource sharing inside a core: all the
harts of the same core must be in the same HSC.

Radically secure ISA May 30th, 2020 19 / 22



Wrap-up

Table of contents

1 Confidential registers

2 Stricter control flows

3 Hardware security contexts

4 Wrap-up

Radically secure ISA May 30th, 2020 20 / 22



Wrap-up

Wrap-up

1 We need a new class of CPUs, the secure one,
2 around a new ISA with modified semantics.
3 The new ISA must enable the software to communicate security

properties to the hardware (confidentiality, HSCs, . . . ).
4 Indirect jumps imply to switch to a new security domain.
5 We can combine the ISA changes for new guarantees: e.g. automatic

memory encryption.

Radically secure ISA May 30th, 2020 21 / 22



Wrap-up

Thank you for listening!

What is your take on this matter ?

Radically secure ISA May 30th, 2020 22 / 22


	Introduction
	Confidential registers
	Stricter control flows
	Hardware security contexts
	Wrap-up

