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Microarchitectural sharing

Definition
Multiple entities can request the same resource.
Entities : hardware threads, cores, processes ...
Resources : cache memories, prediction tables, FSMs, buffers ...

Two kinds of sharing
Temporal : use the same resource but at different points in time.
Spatial : use the same resource at the same time.
Both can be combined.
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The cache memory example

Data but also timing informations are shared between the entities.
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An implementation issue ...

Targeted shared resources are in the microarchitecture.
Leakages depend on the implementation.
Microarchitecture cannot be controlled by the software.

... but not only !
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A global issue

Which part knows the application logic ?
Which part can efficiently make the isolation ?
How can they exchange information ?

The whole system is concerned !
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How to modify the ISA ?

Constraints :
1 Consider the whole isolation issue : temporal and spatial sharing.
2 Create custom security domains.
3 Scalability to multiple systems.
4 Preserve the architecture abstraction

Contextualization : associate a domain to each data and resource.
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Our security domain model.

New dedicated register :
identifier : an unique number for each security domain.

New instruction : CONTEXT.SWITCH.
Indicates a domain change.
Some actions must be done :

1 Flush traces from the old domain.
2 Split resources if needed.
3 Lock resources if needed.

Successful → a new domain can be safely executed.
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Software view.

1. # OLD CONTEXT
2. old-app:
3. ...
4. ...
10. switch-code:
11. csrw nextid,a0 # config
12. switch a0 # switch

13. # NEW CONTEXT
14. new-app:
15. ...
16. ...
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Hardware view : before switch.
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Hardware view : after switch.

Successfully implemented in two cores, one with SMT.
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An implementation agnostic benchmark

Goal :
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints :
focus on timing information leakages in the design,
consider common shared resources,
focus on vulnerability, not exploitability.

Scenario :
a trojan encodes a value in a shared resource state,
a spy tries to recover the value.
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The cache example : temporal sharing
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Other benchmarks
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More under development ...
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Conclusion

Shared resources are sources of vulnerability.
The ISA must be modified to give security information to the
hardware.
Software indicates its constraints, hardware applies them.
A new security benchmark to evaluate the implementations.

Timesecbench : https ://gitlab.inria.fr/rlasherm/timesecbench
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