
Shared resources ISA contextualization Timing evaluation Conclusion

Preventing timing information leakages from the
microarchitecture

By Mathieu Escouteloup (Inria)
Advisors: Ronan Lashermes (Inria)
Christophe Bidan (CentraleSupélec)

Jacques Fournier (CEA-Leti)

March 30, 2020

1 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Table of contents

1 Shared resources

2 ISA contextualization

3 Timing evaluation

4 Conclusion

2 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Table of contents

1 Shared resources

2 ISA contextualization

3 Timing evaluation

4 Conclusion

3 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Microarchitectural sharing

Definition
Multiple entities can request the same resource.
Entities : hardware threads, cores, processes ...
Resources : cache memories, prediction tables, FSMs, buffers ...

Two kinds of sharing
Temporal : use the same resource but at different points in time.
Spatial : use the same resource at the same time.
Both can be combined.

4 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

The cache memory example

Data but also timing informations are shared between the entities.

5 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

An implementation issue ...

Targeted shared resources are in the microarchitecture.
Leakages depend on the implementation.
Microarchitecture cannot be controlled by the software.

... but not only !
6 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Table of contents

1 Shared resources

2 ISA contextualization

3 Timing evaluation

4 Conclusion

7 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

A global issue

Which part knows the application logic ?
Which part can efficiently make the isolation ?
How can they exchange information ?

The whole system is concerned !

8 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

How to modify the ISA ?

Constraints :
1 Consider the whole isolation issue : temporal and spatial sharing.
2 Create custom security domains.
3 Scalability to multiple systems.
4 Preserve the architecture abstraction

Contextualization : associate a domain to each data and resource.

9 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Our security domain model.

New dedicated register :
identifier : an unique number for each security domain.

New instruction : CONTEXT.SWITCH.
Indicates a domain change.
Some actions must be done :

1 Flush traces from the old domain.
2 Split resources if needed.
3 Lock resources if needed.

Successful → a new domain can be safely executed.

10 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Software view.

1. # OLD CONTEXT
2. old-app:
3. ...
4. ...
10. switch-code:
11. csrw nextid,a0 # config
12. switch a0 # switch

13. # NEW CONTEXT
14. new-app:
15. ...
16. ...

11 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Hardware view : before switch.

12 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Hardware view : after switch.

Successfully implemented in two cores, one with SMT.

13 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Table of contents

1 Shared resources

2 ISA contextualization

3 Timing evaluation

4 Conclusion

14 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

An implementation agnostic benchmark

Goal :
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints :
focus on timing information leakages in the design,
consider common shared resources,
focus on vulnerability, not exploitability.

Scenario :
a trojan encodes a value in a shared resource state,
a spy tries to recover the value.

15 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

The cache example : temporal sharing

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
y
c
le

s

(a) Unprotected L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
y
c
le

s

(b) Protected L1D

16 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Other benchmarks

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
y
c
le

s

(a) L1I

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
y
c
le

s

(b) L1I

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
p
y
 v

a
lu

e

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
y
c
le

s

(c) BHT

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
p
y
 v

a
lu

e

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
y
c
le

s

(d) BHT

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
p
y
 v

a
lu

e

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
y
c
le

s

(e) BTB

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
p
y
 v

a
lu

e

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
y
c
le

s

(f) BTB

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 4

 6

 8

 10

 12

C
y
c
le

s

(g) Cross L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 4

 6

 8

 10

 12

C
y
c
le

s

(h) Cross L1D

More under development ...

17 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Table of contents

1 Shared resources

2 ISA contextualization

3 Timing evaluation

4 Conclusion

18 / 19

Shared resources ISA contextualization Timing evaluation Conclusion

Conclusion

Shared resources are sources of vulnerability.
The ISA must be modified to give security information to the
hardware.
Software indicates its constraints, hardware applies them.
A new security benchmark to evaluate the implementations.

Timesecbench : https ://gitlab.inria.fr/rlasherm/timesecbench

19 / 19

	Shared resources
	ISA contextualization
	Timing evaluation
	Conclusion

