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Microarchitectural sharing

o Multiple entities can request the same resource.
o Entities: hardware threads, cores, processes ...

@ Resources: cache memories, buffers, execution units, buses ...

Two kinds of sharing

o Temporal: use the same resource but at different points in time.
o Spatial: use the same resource at the same time.

@ Both can be combined.
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The cache memory example
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Data but also timing informations are

shared between the entities.
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An implementation issue ...
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o Targeted shared resources are in the microarchitecture.

o Leakages depend on the implementation.

@ Microarchitecture cannot be controlled by the software.
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ISA contextualization
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A global issue

Hardware

o Which part knows the application logic ?
e Which part can efficiently make the isolation ?

o How can they exchange information ?

The whole system is concerned!
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How to modify the ISA 7

Constraints:

@ Consider the whole isolation issue: temporal and spatial sharing.
@ Create custom security domains.
@ Usable for simple microcontrollers or complex servers.

@ Preserve the architecture abstraction.

Contextualization

Associate a security domain to each data and resource. Our model: a
dome.
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Our dome model.

New dedicated register:

o identifier: an unique number for each security domain.

@ capability: indications on domain’s needs.

New instruction: DOME.SWITCH.

@ Indicates a domain change.
@ The hardware manages the shared resources.

o Successful — a new domain can be safely executed.

dome.switch

domework E domecur
identifier | —+3 | identifier
capabilities —E—» capabilities &’1/7 7
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Shared resources design
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Our goal

Shared resource security property

The only information that a security domain may extract from a
shared resource is the domain’s own data or the resource’s static
availability.

Strategies

o Define generic principles to design secure shared resources.
o 3 complementary strategies: lock, split and flush.
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Design strategy: lock

Principle: static allocation.

The different minimal resources needed by a security domain must be
allocated during the domain creation and locked until its deletion.

Req DO __Ressource
oK

Req D1 __Ressource

Mechanisms: static allocation and tagged resources.
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Design principles: split

Principle: partitioning.

A resource able to handle requests from multiple security domains
simultaneously must be able to partition each domain state in its own
isolated compartment. States and data cannot be shared.

CPU D

D1
D1
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Mechanism: spatial partitioning.
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Design principles: split

Principle: availability split.
A spatially shared resource must ensure that, at any given time, its
availability for any security domain is independent from the domains

being served.
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Mechanism: temporal partitioning.
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Design principles: flush

Principle: release.

When a security domain ends, all its associated resources must be
released only when all persistent states have also been erased.

CPU

O :

Mechanism: flush traces. &1/74&/-

17 /27



Shared resources design

[e]e]e]e]o]e] Jo]e]e)

Resource lifecycle

Free

Allocatio Release

Usable Flush

No spatial sharing — Usable or Flush
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Shared resources design

Software view.
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# OLD DOME
old-app:

switch-code:
csrw nextid,al
dome.switch a0l

# NEW DOME
new-app:
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# config
# switch
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Hardware view: before switch.
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Hardware view: after switch.
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Successfully implemented in two cores, one with SMT.
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Timing evaluation
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An implementation agnostic benchmark

Goal:
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints:

o show the lack of timing information leakages,
@ consider common shared resources,

o focus on vulnerability, not exploitability.

Scenario:

@ a trojan encodes a value in a shared resource state,
@ a spy tries to recover the value.
lrreia—~
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The cache example: temporal sharing
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Other benchmarks
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More under development ...
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Conclusion

@ Shared resources are sources of vulnerability.

o The ISA must be modified to give security information to the
hardware.

o Software indicates its constraints, hardware applies them.

@ A new security benchmark to evaluate the implementations.

Timesecbench: https://gitlab.inria.fr/rlasherm /timesecbench
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