Under the dome: preventing hardware timing
information leakage

By Mathieu Escouteloup (Inria)
Advisors: Ronan Lashermes (Inria)
Christophe Bidan (CentraleSupélec)

Jacques Fournier (CEA-Leti)

November 12, 2021

1/27

Table of contents

@ An isolation issue

© ISA contextualization
@ Shared resources design
© Timing evaluation

© Conclusion

2/ 27

An isolation issue

@0000

Table of contents

@ An isolation issue

3/27

An isolation
[e] Je]e]e]

16 Bytes/cycie

ThStucon Fech & PreDecode
(168 vindow)

T

apAYE

Rename / Alocare [etrement
Petrar Buffer (264 anlrias)

Schedler
reeger prsce eoiter
e Unifed Reservaser Staion ()
a3 Reasters) Ty

s 8o

r i 3 2 2lis =8 85 | s
g =9

I o B |5 o8
@ g is
L 3

s ol
rm i v P,
(CEleecn] EUs

Execution Engine Store Buffer & Forwarding
(56 entres)

e ~

Ve

bz

VENTEURS 0U MONDE NUMERQUE

apAYEY

Memory Subsystem
4 /27

An isolation issue

[e]e] Jele]

Microarchitectural sharing

o Multiple entities can request the same resource.
o Entities: hardware threads, cores, processes ...

@ Resources: cache memories, buffers, execution units, buses ...

Two kinds of sharing

o Temporal: use the same resource but at different points in time.
o Spatial: use the same resource at the same time.

@ Both can be combined.

An isolation issue

[e]e]e] o]

The cache memory example

Thread 0 <—><—>

Core 0

Thread 1 <—><—>

L2 (<>
L3 [«

Core 1 <>

Data but also timing informations are

shared between the entities.

Ve

NmsIQuE

6/27

An isolation issue

[e]e]ele]]

An implementation issue ...

oftware

Hardware S
ISA view

®
=
e

Back End

<>
O <>

Front End

Scheduler

D

NLP Esm

o Targeted shared resources are in the microarchitecture.

o Leakages depend on the implementation.

@ Microarchitecture cannot be controlled by the software.

HrIQUE

... but not only !
7/27

ISA contextualization

@000

Table of contents

© ISA contextualization

8 /27

ISA contextualization

0@00

A global issue

Hardware

o Which part knows the application logic ?
e Which part can efficiently make the isolation ?

o How can they exchange information ?

The whole system is concerned!

9/27

ISA contextualization

0000

How to modify the ISA 7

Constraints:

@ Consider the whole isolation issue: temporal and spatial sharing.
@ Create custom security domains.
@ Usable for simple microcontrollers or complex servers.

@ Preserve the architecture abstraction.

Contextualization

Associate a security domain to each data and resource. Our model: a
dome.

ISA contextualization

[e]e]e])

Our dome model.

New dedicated register:

o identifier: an unique number for each security domain.

@ capability: indications on domain’s needs.

New instruction: DOME.SWITCH.

@ Indicates a domain change.
@ The hardware manages the shared resources.

o Successful — a new domain can be safely executed.

dome.switch

domework E domecur
identifier | —+3 | identifier
capabilities —E—» capabilities &’1/7 7

11 /27

Shared resources design

9000000000

Table of contents

@ Shared resources design

12 /27

Shared resources design

O®00000000

Our goal

Shared resource security property

The only information that a security domain may extract from a
shared resource is the domain’s own data or the resource’s static
availability.

Strategies

o Define generic principles to design secure shared resources.
o 3 complementary strategies: lock, split and flush.

Shared resources design

00®0000000

Design strategy: lock

Principle: static allocation.

The different minimal resources needed by a security domain must be
allocated during the domain creation and locked until its deletion.

Req DO __Ressource
oK

Req D1 __Ressource

Mechanisms: static allocation and tagged resources.

HrIQUE

14 /27

Shared resources design

[e]e]e] Jo]e]e]e]e]e)

Design principles: split

Principle: partitioning.

A resource able to handle requests from multiple security domains
simultaneously must be able to partition each domain state in its own
isolated compartment. States and data cannot be shared.

CPU D

D1
D1
=3 (o2

Mechanism: spatial partitioning.

Bje

15 /27

Shared resources design

[e]e]e]e] Je]ele]e]e)

Design principles: split

Principle: availability split.
A spatially shared resource must ensure that, at any given time, its
availability for any security domain is independent from the domains

being served.
6):0):®:
1 L} 1
1 [] []

D1 | D2 | D1

>

time

Mechanism: temporal partitioning.

16 /27

Shared resources design

[e]e]e]e]o] Jele]e]e)

Design principles: flush

Principle: release.

When a security domain ends, all its associated resources must be
released only when all persistent states have also been erased.

CPU

O :

Mechanism: flush traces. &1/74&/-

17 /27

Shared resources design

[e]e]e]e]o]e] Jo]e]e)

Resource lifecycle

Free

Allocatio Release

Usable Flush

No spatial sharing — Usable or Flush

18 /27

Shared resources design

Software view.

13.
14.
15.
16.

OLD DOME
old-app:

switch-code:
csrw nextid,al
dome.switch a0l

NEW DOME
new-app:

[e]e]e]e]o]e]e] Jele)

config
switch

Z2

19 /27

Shared resources

[e]e]e]e]o]e]e]e] o)

Hardware view: before switch.

Back End

Front End

=
o
;
=
Fetch buffer

Decoder

A4

Scheduler

v 1 &
)

< 5 3 2

o € [&

2 H 9

o

(@]

1
Decoder

=
o
;
=
i Fetch buffer
r
&)
=
|
|
=

Ve

brzia—

INVENTEURS 0U MONDE NUMERQUE

20 /27

Shared resources

000000000 e

Hardware view: after switch.

Back End

Front End

Fetch buffer

Decoder

Scheduler

1

Decoder

.T1
=
i Fetch buffer
T
f

Successfully implemented in two cores, one with SMT.

Ve

brzia—

INVENTEURS 0U MONDE NUMERQUE

21 /27

Timing evaluation

@000

Table of contents

@ Timing evaluation

22 /27

Timing evaluation

[e] Jele)

An implementation agnostic benchmark

Goal:
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints:

o show the lack of timing information leakages,
@ consider common shared resources,

o focus on vulnerability, not exploitability.

Scenario:

@ a trojan encodes a value in a shared resource state,
@ a spy tries to recover the value.
lrreia—~

HrIQUE

23 /27

Timing evaluation

[e]e] 1o

The cache example: temporal sharing

Spy value

S I I S -]

8
7
6
5
4
3
2

01 2 3 4 5 6 7
Trojan value

(a) Unprotected L1D

Cycles

Spy value

SN S A NS - JEN]

a o
Cycles

IS

0

1 2 3 4 5 6 7
Trojan value

(b) Protected L1D

24 /27

Other benchmarks

Spy value

Spy value

o - m e s

-

0123456 7
Trojan value

(a) L1I

Trojan value

(e) BTB

7
6
L5
24
)
&
2
1
0
0123 456 7
Trojan value
20
25
g 2
H
[
2 10
5
0
0 5 10 15 20 25 30
Trojan value

(f) BTB

Spy value

Spy value

0
0 20 40 60 80 100 120
Trojan value

(c) BHT

01 23456 7

“Trojan value

(g) Cross L1D

Timing evaluation

[e]e]e])

39
120
a8
. 100
%, g 80
BL S w0
u° &
“
3
32 20
a1 0
0 20 40 60 80 100 120
Trojan value
12
7
10 6
.5
R
5z
69 &
2
4 1
o
2
01234567

Trojan value

(h) Cro

More under development ...

INVENTEURS 0U MONDE NUMERQUE

Cycles

Table of contents

© Conclusion

26 /27

Conclusion

@ Shared resources are sources of vulnerability.

o The ISA must be modified to give security information to the
hardware.

o Software indicates its constraints, hardware applies them.

@ A new security benchmark to evaluate the implementations.

Timesecbench: https://gitlab.inria.fr/rlasherm /timesecbench

Ve

HrIQUE

27 /27

	An isolation issue
	ISA contextualization
	Shared resources design
	Timing evaluation
	Conclusion

