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Microarchitecture: the Intel’s Skylake example
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Microarchitectural sharing

Definition
Multiple entities can request the same resource.
Entities: hardware threads, cores, processes ...
Resources: cache memories, buffers, execution units, buses ...

Two kinds of sharing
Temporal: use the same resource but at different points in time.
Spatial: use the same resource at the same time.
Both can be combined.
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The cache memory example

Data but also timing informations are shared between the entities.
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An implementation issue ...

Targeted shared resources are in the microarchitecture.
Leakages depend on the implementation.
Microarchitecture cannot be controlled by the software.

... but not only !
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A global issue

Which part knows the application logic ?
Which part can efficiently make the isolation ?
How can they exchange information ?

The whole system is concerned!
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How to modify the ISA ?

Constraints:
1 Consider the whole isolation issue: temporal and spatial sharing.
2 Create custom security domains.
3 Usable for simple microcontrollers or complex servers.
4 Preserve the architecture abstraction.

Contextualization
Associate a security domain to each data and resource. Our model: a
dome.
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Our dome model.

New dedicated register:
identifier: an unique number for each security domain.
capability: indications on domain’s needs.

New instruction: DOME.SWITCH.
Indicates a domain change.
The hardware manages the shared resources.
Successful → a new domain can be safely executed.

identifier
capabilities

identifier
capabilities

domework
dome.switch

domecur
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Our goal

Shared resource security property
The only information that a security domain may extract from a
shared resource is the domain’s own data or the resource’s static
availability.

Strategies
Define generic principles to design secure shared resources.
3 complementary strategies: lock, split and flush.
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Design strategy: lock

Principle: static allocation.
The different minimal resources needed by a security domain must be
allocated during the domain creation and locked until its deletion.

Mechanisms: static allocation and tagged resources.
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Design principles: split

Principle: partitioning.
A resource able to handle requests from multiple security domains
simultaneously must be able to partition each domain state in its own
isolated compartment. States and data cannot be shared.

Mechanism: spatial partitioning.
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Design principles: split

Principle: availability split.
A spatially shared resource must ensure that, at any given time, its
availability for any security domain is independent from the domains
being served.

Mechanism: temporal partitioning.
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Design principles: flush

Principle: release.
When a security domain ends, all its associated resources must be
released only when all persistent states have also been erased.

Mechanism: flush traces.
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Resource lifecycle

Usable

Allocation

Free

Flush

Release

No spatial sharing → Usable or Flush
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Software view.

1. # OLD DOME
2. old-app:
3. ...
4. ...
10. switch-code:
11. csrw nextid,a0 # config
12. dome.switch a0 # switch

13. # NEW DOME
14. new-app:
15. ...
16. ...
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Hardware view: before switch.
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Hardware view: after switch.

Successfully implemented in two cores, one with SMT.
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An implementation agnostic benchmark

Goal:
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints:
show the lack of timing information leakages,
consider common shared resources,
focus on vulnerability, not exploitability.

Scenario:
a trojan encodes a value in a shared resource state,
a spy tries to recover the value.
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The cache example: temporal sharing
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Other benchmarks
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More under development ...
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Conclusion

Shared resources are sources of vulnerability.
The ISA must be modified to give security information to the
hardware.
Software indicates its constraints, hardware applies them.
A new security benchmark to evaluate the implementations.

Timesecbench: https://gitlab.inria.fr/rlasherm/timesecbench
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