
An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Under the dome: preventing hardware timing
information leakage

By Mathieu Escouteloup (Inria)
Advisors: Ronan Lashermes (Inria)
Christophe Bidan (CentraleSupélec)

Jacques Fournier (CEA-Leti)

November 12, 2021

1 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Table of contents

1 An isolation issue

2 ISA contextualization

3 Shared resources design

4 Timing evaluation

5 Conclusion

2 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Table of contents

1 An isolation issue

2 ISA contextualization

3 Shared resources design

4 Timing evaluation

5 Conclusion

3 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Microarchitecture: the Intel’s Skylake example

4 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Microarchitectural sharing

Definition
Multiple entities can request the same resource.
Entities: hardware threads, cores, processes ...
Resources: cache memories, buffers, execution units, buses ...

Two kinds of sharing
Temporal: use the same resource but at different points in time.
Spatial: use the same resource at the same time.
Both can be combined.

5 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

The cache memory example

Data but also timing informations are shared between the entities.

6 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

An implementation issue ...

Targeted shared resources are in the microarchitecture.
Leakages depend on the implementation.
Microarchitecture cannot be controlled by the software.

... but not only !
7 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Table of contents

1 An isolation issue

2 ISA contextualization

3 Shared resources design

4 Timing evaluation

5 Conclusion

8 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

A global issue

Which part knows the application logic ?
Which part can efficiently make the isolation ?
How can they exchange information ?

The whole system is concerned!

9 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

How to modify the ISA ?

Constraints:
1 Consider the whole isolation issue: temporal and spatial sharing.
2 Create custom security domains.
3 Usable for simple microcontrollers or complex servers.
4 Preserve the architecture abstraction.

Contextualization
Associate a security domain to each data and resource. Our model: a
dome.

10 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Our dome model.

New dedicated register:
identifier: an unique number for each security domain.
capability: indications on domain’s needs.

New instruction: DOME.SWITCH.
Indicates a domain change.
The hardware manages the shared resources.
Successful → a new domain can be safely executed.

identifier
capabilities

identifier
capabilities

domework
dome.switch

domecur

11 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Table of contents

1 An isolation issue

2 ISA contextualization

3 Shared resources design

4 Timing evaluation

5 Conclusion

12 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Our goal

Shared resource security property
The only information that a security domain may extract from a
shared resource is the domain’s own data or the resource’s static
availability.

Strategies
Define generic principles to design secure shared resources.
3 complementary strategies: lock, split and flush.

13 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Design strategy: lock

Principle: static allocation.
The different minimal resources needed by a security domain must be
allocated during the domain creation and locked until its deletion.

Mechanisms: static allocation and tagged resources.

14 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Design principles: split

Principle: partitioning.
A resource able to handle requests from multiple security domains
simultaneously must be able to partition each domain state in its own
isolated compartment. States and data cannot be shared.

Mechanism: spatial partitioning.

15 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Design principles: split

Principle: availability split.
A spatially shared resource must ensure that, at any given time, its
availability for any security domain is independent from the domains
being served.

Mechanism: temporal partitioning.

16 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Design principles: flush

Principle: release.
When a security domain ends, all its associated resources must be
released only when all persistent states have also been erased.

Mechanism: flush traces.

17 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Resource lifecycle

Usable

Allocation

Free

Flush

Release

No spatial sharing → Usable or Flush

18 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Software view.

1. # OLD DOME
2. old-app:
3. ...
4. ...
10. switch-code:
11. csrw nextid,a0 # config
12. dome.switch a0 # switch

13. # NEW DOME
14. new-app:
15. ...
16. ...

19 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Hardware view: before switch.

20 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Hardware view: after switch.

Successfully implemented in two cores, one with SMT.

21 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Table of contents

1 An isolation issue

2 ISA contextualization

3 Shared resources design

4 Timing evaluation

5 Conclusion

22 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

An implementation agnostic benchmark

Goal:
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints:
show the lack of timing information leakages,
consider common shared resources,
focus on vulnerability, not exploitability.

Scenario:
a trojan encodes a value in a shared resource state,
a spy tries to recover the value.

23 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

The cache example: temporal sharing

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
y
c
le

s

(a) Unprotected L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 3

 4

 5

 6

 7

 8

C
y
c
le

s

(b) Protected L1D

24 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Other benchmarks

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
y
c
le

s

(a) L1I

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 11

 12

 13

 14

 15

 16

 17

 18

 19

C
y
c
le

s

(b) L1I

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
p
y
 v

a
lu

e

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
y
c
le

s

(c) BHT

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

S
p
y
 v

a
lu

e

Trojan value

 31

 32

 33

 34

 35

 36

 37

 38

 39

C
y
c
le

s

(d) BHT

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
p
y
 v

a
lu

e

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
y
c
le

s

(e) BTB

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
p
y
 v

a
lu

e

Trojan value

 32

 34

 36

 38

 40

 42

 44

 46

C
y
c
le

s

(f) BTB

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 4

 6

 8

 10

 12

C
y
c
le

s

(g) Cross L1D

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

S
p
y
 v

a
lu

e

Trojan value

 2

 4

 6

 8

 10

 12

C
y
c
le

s

(h) Cross L1D

More under development ...

25 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Table of contents

1 An isolation issue

2 ISA contextualization

3 Shared resources design

4 Timing evaluation

5 Conclusion

26 / 27

An isolation issue ISA contextualization Shared resources design Timing evaluation Conclusion

Conclusion

Shared resources are sources of vulnerability.
The ISA must be modified to give security information to the
hardware.
Software indicates its constraints, hardware applies them.
A new security benchmark to evaluate the implementations.

Timesecbench: https://gitlab.inria.fr/rlasherm/timesecbench

27 / 27

	An isolation issue
	ISA contextualization
	Shared resources design
	Timing evaluation
	Conclusion

